
A Self-Adaptive Method for Extraction of Document-Specific Alphabets

Stefan Pletschacher
Pattern Recognition and Image Analysis (PRImA) Research Lab

School of Computing, Science and Engineering, University of Salford, Greater Manchester,
United Kingdom

s.pletschacher@primaresearch.org

Abstract

Recognition and encoding of digitized historical

documents is still a challenging and difficult task. A
major problem is the occurrence of unknown glyphs
and symbols which might not even exist in modern
alphabets. Current pre-trained OCR-methods hardly
deliver usable results for such documents. This paper
describes an alternative approach and framework for
handling printed historical documents without
restrictions on the contained alphabets or fonts. The
basic idea is to derive all information required for
encoding directly from the document itself. This is
achieved by extracting a document-specific prototype
alphabet of locatable glyphs. Core of the system is a
customized clustering method which adapts
automatically to new documents by ascertaining
appropriate threshold parameters based on the special
characteristics of glyphs. This way, the system is able
to run without manual interventions and can be
integrated into automated mass digitization workflows.

1. Introduction

The efforts to digitize historical documents as part
of our cultural heritage have dramatically increased
over the last years. Ultimate goal for these resources is
completely recognized and hence searchable text.
Accordingly, research into improved and more
specialized Optical Character Recognition (OCR)
currently constitutes an important field. However,
there is also a huge amount of documents which will
probably not benefit from those endeavors. This is
especially true for documents containing ancient
scripts, obsolete typefaces as well as unknown
characters and symbols which cannot be handled by
pre-trained OCR-engines. Figure 1 shows a typical
example of a historical document which cannot be
completely recognized or encoded using conventional

OCR due to the inherent alphabet. Many of regularly
used glyphs in historical documents have no
counterpart in modern, computer-based alphabets.

As manual transcription of such documents is not
applicable to mass digitization, it is desirable to have
alternative means for automated processing without
any restrictions on the contained alphabets, scripts or
fonts. Moreover, for the representation of digitized
documents as close to the original as possible, it is also
required to avoid any alterations of the material. It is
therefore important to have access not only to
contained text of source documents, but also to their
original appearance. This includes not only the
reproduction of original fonts and special symbols but
also broken characters or mistakes in writing (which
conventional dictionary based OCR-methods wrongly
tend to correct).

Figure 1. Examples for ancient glyphs which
are not part of modern alphabets.

In the next section, a framework for handling

printed documents which are not suitable for current
OCR-methods is presented. Subsequently, the
background and development of a module for the
extraction of document-specific alphabets is described,
followed by a discussion of particular effects and
concluding remarks.

2009 10th International Conference on Document Analysis and Recognition

978-0-7695-3725-2/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDAR.2009.253

656

2. OCR-independent document encoding

Conventional OCR-methods rely on known features
or instances of target characters for good recognition
results. Together with appropriate dictionaries for post
correction they are able to achieve acceptable
recognition rates. Unfortunately, this background
knowledge is very specific to different document types
and requires a high effort to be obtained. Optimization
of OCR-engines to support a broader variety of
documents is absolutely desirable. However, for a lot
of unique material like the numerous historical
documents in libraries such an effort cannot be
justified if only few instances benefit. As a
consequence, such material must be either manually
transcribed or left untouched unless a new approach
without OCR can be provided.

The main idea at this point is not to rely on any
prior knowledge or predefined alphabets but to extract
all necessary information directly from the documents
themselves. For putting this into practice, a document-
specific alphabet has to be extracted from the original.
This can be achieved by clustering all occurrences of
characters into classes and then representing each class
by just one prototype [1]. Once this document-specific
alphabet has been determined, the original may be
encoded by replacing all individual characters with a
reference to their particular prototype. This follows the
basic idea of symbolic compression [2].

Only few systems are pursuing this general
approach (e.g. [3]). The work presented here, however,
goes much further by integrating the ability to adapt to
new document types automatically and by generating a
corresponding vector font along with the document-
specific alphabet. To obtain such a generic font, each
prototype is transformed into a path description using a
specialized raster-to-vector conversion which
preserves the appearance of glyphs as close to the
original as possible. Intermediate result is an SVG-font
which can be directly integrated in XML-based
descriptions of encoded documents [4]. Suchlike
represented documents, based on a document-specific
alphabet and font, can be easily processed, transformed
and output on various platforms using standard XML-
technologies.

3. A framework for encoding and
repurposing of digitized documents

The outlined extraction of document-specific

alphabets is part of a larger encoding and repurposing
framework [5]. This system consists of several coupled
modules. Namely, the modules include preprocessing,

text segmentation, alphabet extraction, font generation,
document encoding, and a repository which also
comprises means for repurposing and transforming
encoded documents into several output formats.

The framework operates as follows: Scanned
facsimiles of originals are fed into the repository and
registered. Once all document pages are available, the
preprocessing step can be initiated in order to obtain
text blocks which are relevant for further preparation.
Other document parts like figures or graphics are dealt
with separately. Text segmentation detects then the
logical structure of lines, words, and characters and
delivers individual images for all glyphs. Those are
further analyzed for ascertaining the prototypes of a
document-specific alphabet. Subsequently a vector
font is created by applying a customized vectorization
method to all prototype images. Code points from the
Unicode private use areas are eventually assigned to all
prototypes to be used in the encoded representation of
the originals. The encoding module stores this
individual alphabet together with the vector font in the
definition section of the output XML instances. The
actual content is then composed of references to the
respective code points. Specific repurposing (e.g. text
reflowing, accessibility improvement etc.) and
transformation methods can now operate on this self-
contained document representation and produce output
formats for various distribution channels like web,
print-on-demand or mobile viewing devices.

4. Self-adaptive extraction of document-
specific alphabets

Core part of the aforementioned framework is the

alphabet extraction module as it determines the unique
glyph prototypes inherent in the present document.
Main task of this module is hence to calculate an
optimal clustering of all glyphs found in the original
and to ascertain one representative for each cluster. In
order to allow a high degree of automation, the method
has to estimate proper process parameters (e.g. the
similarity threshold to distinguish glyphs during the
clustering) automatically rather than asking for input
from a human operator. Moreover, it is also desired
that the method adjusts to new document types
automatically. This is necessary as the system is
intended to handle various kinds of scripts, languages
and fonts which may all require individual settings. So
far, optimal parameters can only be detected
afterwards, comparing actual clustering results with
ground-truth for all different configurations.
Unfortunately, this ground-truth does not exist for
unprocessed documents, which prevents direct

657

parameter evaluation. The method outlined in the
following overcomes this limitation by introducing an
auxiliary metrics for this purpose.

4.1. Clustering

For the specific task of calculating a document-

specific glyph alphabet there are two major constraints
on possible clustering algorithms:

1. The number of true classes is unknown. This
results directly from the approach not to limit the set of
processible characters in any way, in contrast to
conventional OCR-methods which rely on predefined
alphabets.

2. The number of glyph instances to be processed is
potentially very high. This is especially true for the
envisaged application to mass digitization of whole
books which may contain up to millions of glyphs.

Accordingly, methods neither requiring the number
of clusters as input nor comparing each glyph to each
other, resulting in exponential runtime, are applicable.
The implemented method is therefore based on
adaptive vector quantization [6, 7], which works
iteratively and dynamically creates new clusters
starting from an empty codebook (set of prototypes).

The algorithm works as follows: The first incoming
glyph forms the first cluster and prototype. The
algorithm then runs over all remaining glyphs and
creates a new cluster whenever the maximum
similarity of the currently processed glyph, compared
to all existing cluster prototypes, lies below a specified
threshold. Otherwise, the present glyph is merged into
that cluster with the highest similarity value. Every
time a new glyph is merged into an existing cluster the
particular prototype representing this class needs to be
updated. This causes prototypes to slightly change with
a growing number of contained glyphs. The actual
prototype bitmap is determined based on the density of
each pixel contributed by all represented glyphs.
Hence, distortions and noise occurring only in few
glyphs are effectively suppressed.

The required similarity measure is calculated by
means of a weighted pattern matching operating on the
glyph images. In order to reflect glyph characteristics
more precisely it takes into account both, error
accumulations and the distance of differing pixels to
the main component by applying corresponding
penalties. This is especially necessary to discern minor
details with a high impact on the accuracy (like the
separation of “O”s and “Q”s). Feature based similarity
measures turned out to be less effective. This is due to
the followed universal approach of finding glyphs with
very similar visual appearance in contrast to omni-font

recognition which usually benefits from feature based
methods.

4.2. Adaptivity

In order to enable automated workflows, the

alphabet extraction module requires the ability to
ascertain the aforementioned optimal threshold for the
similarity measure automatically, depending on the
actual input. Optimal means in this context to fulfill
two conditions:

1. Avoid misclassifications in form of substitution
errors (e.g. a glyph of true class “A” wrongly assigned
to a cluster containing only glyphs of true class “B”).
This is necessary to achieve a low error rate (ratio of
substitution errors to total number of glyphs) and
hence, to prevent falsification of the content.

2. Minimize the number of obtained clusters (down
to the true number of classes in the original) to obtain a
high compression rate (ratio of found clusters to true
classes) in terms of symbolic compression.

Unfortunately, measures to optimize one of the two
tend to have a negative effect on the other. This trade-
off has to be considered when identifying the optimal
threshold. Since a major goal of the framework is
robustness, a low error rate must be given priority over
an optimized compression rate.

 Given a labeled set of glyph images (i.e. ground-
truthed) the detection of the optimal threshold is a
straightforward task. The corresponding algorithm
loops over all possible thresholds and performs the
particular clustering, calculating substitution error rate
and compression ratio. The optimal value can then be
selected considering the above two conditions.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400

Er
ro
r r
at
e

Co
m
pr
es
si
on

 ra
te

Threshold

Compression rate

Error rate

Figure 2. Error and compression rate for
increasing threshold (Comp. rate 0 – no
comp.; 1 – maximum symbolic comp.; greater
1 – lossy compression).

Obviously, the compression rate increases with
higher thresholds. Upper limit is the case when all

658

glyphs end up in one single cluster. The other extreme
is a zero error rate in terms of substitutions, however,
with no compression at all. This is the case when each
glyph forms a single cluster. The optimal threshold is
hence the highest one which still does not cause
substitution errors. Figure 2 shows the typical behavior
of error and compression, obtained from a digitized
and ground-truthed historical document containing
German Fraktur.

The function of substitution errors over all
thresholds is unfortunately not available for new input
material and can only be obtained via labor extensive,
manual ground-truthing. As this is not feasible in
automated workflows, it is desirable to find a function
which a) can be calculated directly from the input and
b) shows the same or at least a similar behavior like the
error function.

Experimental results show that the maximum intra
cluster distance can be used for this purpose. It
constitutes the maximum difference of the similarity
measure between any glyph and its cluster prototype
among all clusters. This function can be calculated
based solely on the clustering results for all considered
thresholds. Moreover, a strong correlation between the
maximum intra cluster distance and the error rate can
be shown for various document types. Figure 3
contains the correlation coefficients from experiments
with different scripts and fonts.

Figure 3. Correlation between maximum intra
cluster distance and error rate for different
document types; (s) – synthetically created
glyphs; (o) – glyphs from a digitized original.

Values close to 1 indicate a high linear correlation

i.e. potential dependency between the two functions.
Due to the high effort for manually producing ground-
truthed test material, synthetic glyph sets have been
created in addition to genuine glyph images from
digitized originals. This was achieved by rendering
characters with known labels using TrueType fonts
and subsequently applying artificial deterioration.

The rationale for the correlation and actually true
dependency is that an increasing threshold causes
bigger clusters which contain also less similar glyphs
(i.e. with a higher distance to the prototype). This goes
along with the introduction of misclassifications and
hence the error rate. The maximum distance shows this
effect better than the average or minimum distance
since it reflects the least similar elements of clusters,
i.e. the ones which are most likely to introduce errors.

In terms of finding the optimal threshold, the task is
now to find the point from where errors are introduced.
The observation from ground-truth based experiments
is that both, error rate and maximum intra cluster
distance, show a leap when the threshold becomes too
high and misclassifications start.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0

100

200

300

400

500

600

0 50 100 150 200 250 300

Er
ro
r r
at
e

M
ax
im

um
 in
tr
a
cl
us
te
r
di
st
an

ce

Threshold

Maximum intra
cluster distance

Error rate

Figure 4. Selection of a safe threshold based
on the maximum intra cluster distance.

The threshold selection method must choose a safe

value in order to guarantee stable and robust processes
according to the aforementioned condition 1. This is
achieved by approximating the first leap with a slope
analysis of the function, selecting the threshold at the
point where the function starts to rise. Once the
threshold is found, the appropriate clustering can be
determined and accordingly the set of prototypes i.e.
the document-specific alphabet can be generated.

5. Discussion

The approach of the framework is built upon the

assumption that self-contained documents like whole
books are based on a finite number of characters and
symbols which form the underlying alphabet. This
alphabet is not always known in advance, especially
not when dealing with historical documents. Using
conventional systems, recognition and encoding of
such originals is therefore only feasible for fragments
or, in the worst case, entirely impossible. The
presented method overcomes this limitation. Moreover,
it allows completely automated workflows which are

659

necessary for mass digitization by automatically
adapting to new document types. Encoding of digitized
documents using a document-specific alphabet is also a
step towards true recognition. This way, the necessary
effort for manual transcription is reduced to labeling
only a dramatically smaller set of prototypes. Even if
this manual labeling is not carried out, there are still all
the benefits from the encoded document representation
(e.g. compression for storage, possibility of
repurposing, cross-media publishing etc.).

The extraction of document-specific alphabets
using pattern matching is feasible if the employed
similarity measure emphasizes discriminating details of
glyphs. Such details are inherent to any font or
graphical alphabet representation since human readers
must be able to distinguish individual characters.
Moreover, it is valid to treat significantly different
appearances of the same character (e.g. scaled or
rotated glyphs) as individual classes. Identical glyphs
with different meanings, on the other hand, are very
rare and can only be recognized using additional
context information e.g. within a post-correction
module. The impact of clustering identical glyphs with
different meanings into the same class is very little in
the scope of the described framework. This is due to
the fact that any graphical reproduction of the encoded
original will again lead to a human readable form.
Consequences for text search are also minimal as fuzzy
query matching methods can easily deal with minor
ambiguities of that kind.

The estimation of the optimal threshold, to judge
about the similarity of two glyphs, plays a central role
for the automation of the whole framework. There is a
tradeoff between a low error rate using restrictive
thresholds and a high compression rate at high
thresholds. The approach of a flexible, document-
specific alphabet allows prioritizing accuracy rather
than compression to make systems more robust. This is
possible due to the different types of potential mis-
classifications. The first type occurs when a glyph is
merged into a wrong cluster. This is a fatal substitution
error and would cause mistakes in the encoded
document. The second is less severe and arises when a
glyph is erroneously put into a new cluster instead of
being merged into its already existing true class. The
first error type is to be avoided by all means for robust
systems. The second, however, causes only
redundancy (i.e. a non-optimal compression) and can
be tolerated up to a certain degree. Thus, it is possible
to implement the aforementioned two conditions for
the optimal threshold in order to calculate the
particularly best value for a given input.

6. Conclusion and future work

The functionality and background of a new method

for self-adaptive extraction of document-specific
alphabets has been shown in this paper. This method
constitutes one of the core components of an
alternative framework for document encoding
independent of conventional OCR and hence not
relying on any prior knowledge about underlying
languages, scripts or fonts. Due to its ability to adapt to
new types of documents it is well suited for integration
into automated mass digitization workflows.

Future work will include further improvements of
the threshold estimation method. This step is currently
very time-consuming as the algorithm iterates over all
possible thresholds and over all input glyphs to find
the best value. It is expected to reduce the number of
necessary iterations dramatically by implementing
heuristics for selecting a representative glyph subset to
operate on. In terms of the framework it is planned to
exploit results of the alphabet extraction module to
refine the preceding glyph segmentation by
implementing a feedback function. Moreover, search
functionalities for document-specific encoded
documents will be developed. The main problem here
is rather the interface for users to enter queries using a
document-specific alphabet than the actual text
matching.

References

[1] G. Kopec, M. Lomelin, “Document-Specific Character
Template Estimation”, Proc. SPIE Vol. 2660, Document
Recognition III, 1996
[2] R. N. Ascher, G. Nagy, “A Means for Achieving a High
Degree of Compaction on Scan-Digitized Printed Text”,
IEEE Transactions on Computers, Volume C-23, Issue 11,
1974
[3] T. M. Breuel, W. Janssen, K. Popat and H. Baird, “Paper
to PDA”, Proc. International Conference on Pattern
Recognition, Quebec, Canada, 2002
[4] S. Pletschacher, M. Eckert, A. C. Huebler, “Vectorization
of Glyphs and Their Representation in SVG for XML-Based
Processing”, Proc. International Conference on Electronic
Publishing, Bansko, Bulgaria, 2006
[5] S. Pletschacher, “Representation of Digitized Documents
Using Document Specific Alphabets and Fonts”, Society For
Imaging Science and Technology (IS&T) Archiving 2008.
Bern, Switzerland, 2008, pp. 198-202
[6] R. M. Gray, “Vector quantization”, IEEE ASSP
Magazine, April 1984, pp. 4-29.
[7] J. E. Fowler, “A Survey of Adaptive Vector
Quantization-Part I: A Unifying Structure”, IPS Lab. Tech.
Rep. TR-97-01, The Ohio State Univ., Mar. 1997.

660

