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Abstract 

 
Recognition and encoding of digitized historical 

documents is still a challenging and difficult task. A 
major problem is the occurrence of unknown glyphs 
and symbols which might not even exist in modern 
alphabets. Current pre-trained OCR-methods hardly 
deliver usable results for such documents. This paper 
describes an alternative approach and framework for 
handling printed historical documents without 
restrictions on the contained alphabets or fonts. The 
basic idea is to derive all information required for 
encoding directly from the document itself. This is 
achieved by extracting a document-specific prototype 
alphabet of locatable glyphs. Core of the system is a 
customized clustering method which adapts 
automatically to new documents by ascertaining 
appropriate threshold parameters based on the special 
characteristics of glyphs. This way, the system is able 
to run without manual interventions and can be 
integrated into automated mass digitization workflows. 
 
1. Introduction 
 

The efforts to digitize historical documents as part 
of our cultural heritage have dramatically increased 
over the last years. Ultimate goal for these resources is 
completely recognized and hence searchable text. 
Accordingly, research into improved and more 
specialized Optical Character Recognition (OCR) 
currently constitutes an important field. However, 
there is also a huge amount of documents which will 
probably not benefit from those endeavors. This is 
especially true for documents containing ancient 
scripts, obsolete typefaces as well as unknown 
characters and symbols which cannot be handled by 
pre-trained OCR-engines. Figure 1 shows a typical 
example of a historical document which cannot be 
completely recognized or encoded using conventional 

OCR due to the inherent alphabet. Many of regularly 
used glyphs in historical documents have no 
counterpart in modern, computer-based alphabets. 

As manual transcription of such documents is not 
applicable to mass digitization, it is desirable to have 
alternative means for automated processing without 
any restrictions on the contained alphabets, scripts or 
fonts. Moreover, for the representation of digitized 
documents as close to the original as possible, it is also 
required to avoid any alterations of the material. It is 
therefore important to have access not only to 
contained text of source documents, but also to their 
original appearance. This includes not only the 
reproduction of original fonts and special symbols but 
also broken characters or mistakes in writing (which 
conventional dictionary based OCR-methods wrongly 
tend to correct). 

 

 
Figure 1. Examples for ancient glyphs which 
are not part of modern alphabets. 

 
In the next section, a framework for handling 

printed documents which are not suitable for current 
OCR-methods is presented. Subsequently, the 
background and development of a module for the 
extraction of document-specific alphabets is described, 
followed by a discussion of particular effects and 
concluding remarks. 
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2. OCR-independent document encoding 
 

Conventional OCR-methods rely on known features 
or instances of target characters for good recognition 
results. Together with appropriate dictionaries for post 
correction they are able to achieve acceptable 
recognition rates. Unfortunately, this background 
knowledge is very specific to different document types 
and requires a high effort to be obtained. Optimization 
of OCR-engines to support a broader variety of 
documents is absolutely desirable. However, for a lot 
of unique material like the numerous historical 
documents in libraries such an effort cannot be 
justified if only few instances benefit. As a 
consequence, such material must be either manually 
transcribed or left untouched unless a new approach 
without OCR can be provided. 

The main idea at this point is not to rely on any 
prior knowledge or predefined alphabets but to extract 
all necessary information directly from the documents 
themselves. For putting this into practice, a document-
specific alphabet has to be extracted from the original. 
This can be achieved by clustering all occurrences of 
characters into classes and then representing each class 
by just one prototype [1]. Once this document-specific 
alphabet has been determined, the original may be 
encoded by replacing all individual characters with a 
reference to their particular prototype. This follows the 
basic idea of symbolic compression [2]. 

Only few systems are pursuing this general 
approach (e.g. [3]). The work presented here, however, 
goes much further by integrating the ability to adapt to 
new document types automatically and by generating a 
corresponding vector font along with the document-
specific alphabet. To obtain such a generic font, each 
prototype is transformed into a path description using a 
specialized raster-to-vector conversion which 
preserves the appearance of glyphs as close to the 
original as possible. Intermediate result is an SVG-font 
which can be directly integrated in XML-based 
descriptions of encoded documents [4]. Suchlike 
represented documents, based on a document-specific 
alphabet and font, can be easily processed, transformed 
and output on various platforms using standard XML-
technologies. 

 
3. A framework for encoding and 
repurposing of digitized documents 

 
The outlined extraction of document-specific 

alphabets is part of a larger encoding and repurposing 
framework [5]. This system consists of several coupled 
modules. Namely, the modules include preprocessing, 

text segmentation, alphabet extraction, font generation, 
document encoding, and a repository which also 
comprises means for repurposing and transforming 
encoded documents into several output formats. 

The framework operates as follows: Scanned 
facsimiles of originals are fed into the repository and 
registered. Once all document pages are available, the 
preprocessing step can be initiated in order to obtain 
text blocks which are relevant for further preparation. 
Other document parts like figures or graphics are dealt 
with separately. Text segmentation detects then the 
logical structure of lines, words, and characters and 
delivers individual images for all glyphs. Those are 
further analyzed for ascertaining the prototypes of a 
document-specific alphabet. Subsequently a vector 
font is created by applying a customized vectorization 
method to all prototype images. Code points from the 
Unicode private use areas are eventually assigned to all 
prototypes to be used in the encoded representation of 
the originals. The encoding module stores this 
individual alphabet together with the vector font in the 
definition section of the output XML instances. The 
actual content is then composed of references to the 
respective code points. Specific repurposing (e.g. text 
reflowing, accessibility improvement etc.) and 
transformation methods can now operate on this self-
contained document representation and produce output 
formats for various distribution channels like web, 
print-on-demand or mobile viewing devices. 

 
4. Self-adaptive extraction of document-
specific alphabets 

 
Core part of the aforementioned framework is the 

alphabet extraction module as it determines the unique 
glyph prototypes inherent in the present document. 
Main task of this module is hence to calculate an 
optimal clustering of all glyphs found in the original 
and to ascertain one representative for each cluster. In 
order to allow a high degree of automation, the method 
has to estimate proper process parameters (e.g. the 
similarity threshold to distinguish glyphs during the 
clustering) automatically rather than asking for input 
from a human operator. Moreover, it is also desired 
that the method adjusts to new document types 
automatically. This is necessary as the system is 
intended to handle various kinds of scripts, languages 
and fonts which may all require individual settings. So 
far, optimal parameters can only be detected 
afterwards, comparing actual clustering results with 
ground-truth for all different configurations. 
Unfortunately, this ground-truth does not exist for 
unprocessed documents, which prevents direct 
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parameter evaluation. The method outlined in the 
following overcomes this limitation by introducing an 
auxiliary metrics for this purpose. 

 
4.1. Clustering 

 
For the specific task of calculating a document-

specific glyph alphabet there are two major constraints 
on possible clustering algorithms: 

1. The number of true classes is unknown. This 
results directly from the approach not to limit the set of 
processible characters in any way, in contrast to 
conventional OCR-methods which rely on predefined 
alphabets. 

2. The number of glyph instances to be processed is 
potentially very high. This is especially true for the 
envisaged application to mass digitization of whole 
books which may contain up to millions of glyphs. 

Accordingly, methods neither requiring the number 
of clusters as input nor comparing each glyph to each 
other, resulting in exponential runtime, are applicable. 
The implemented method is therefore based on 
adaptive vector quantization [6, 7], which works 
iteratively and dynamically creates new clusters 
starting from an empty codebook (set of prototypes). 

The algorithm works as follows: The first incoming 
glyph forms the first cluster and prototype. The 
algorithm then runs over all remaining glyphs and 
creates a new cluster whenever the maximum 
similarity of the currently processed glyph, compared 
to all existing cluster prototypes, lies below a specified 
threshold. Otherwise, the present glyph is merged into 
that cluster with the highest similarity value. Every 
time a new glyph is merged into an existing cluster the 
particular prototype representing this class needs to be 
updated. This causes prototypes to slightly change with 
a growing number of contained glyphs. The actual 
prototype bitmap is determined based on the density of 
each pixel contributed by all represented glyphs. 
Hence, distortions and noise occurring only in few 
glyphs are effectively suppressed. 

The required similarity measure is calculated by 
means of a weighted pattern matching operating on the 
glyph images. In order to reflect glyph characteristics 
more precisely it takes into account both, error 
accumulations and the distance of differing pixels to 
the main component by applying corresponding 
penalties. This is especially necessary to discern minor 
details with a high impact on the accuracy (like the 
separation of “O”s and “Q”s). Feature based similarity 
measures turned out to be less effective. This is due to 
the followed universal approach of finding glyphs with 
very similar visual appearance in contrast to omni-font 

recognition which usually benefits from feature based 
methods. 

 
4.2. Adaptivity 

 
In order to enable automated workflows, the 

alphabet extraction module requires the ability to 
ascertain the aforementioned optimal threshold for the 
similarity measure automatically, depending on the 
actual input. Optimal means in this context to fulfill 
two conditions: 

1. Avoid misclassifications in form of substitution 
errors (e.g. a glyph of true class “A” wrongly assigned 
to a cluster containing only glyphs of true class “B”). 
This is necessary to achieve a low error rate (ratio of 
substitution errors to total number of glyphs) and 
hence, to prevent falsification of the content. 

2. Minimize the number of obtained clusters (down 
to the true number of classes in the original) to obtain a 
high compression rate (ratio of found clusters to true 
classes) in terms of symbolic compression.  

Unfortunately, measures to optimize one of the two 
tend to have a negative effect on the other. This trade-
off has to be considered when identifying the optimal 
threshold. Since a major goal of the framework is 
robustness, a low error rate must be given priority over 
an optimized compression rate. 

 Given a labeled set of glyph images (i.e. ground-
truthed) the detection of the optimal threshold is a 
straightforward task. The corresponding algorithm 
loops over all possible thresholds and performs the 
particular clustering, calculating substitution error rate 
and compression ratio. The optimal value can then be 
selected considering the above two conditions. 
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Figure 2. Error and compression rate for 
increasing threshold (Comp. rate 0 – no 
comp.; 1 – maximum symbolic comp.; greater 
1 – lossy compression). 
 

Obviously, the compression rate increases with 
higher thresholds. Upper limit is the case when all 
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glyphs end up in one single cluster. The other extreme 
is a zero error rate in terms of substitutions, however, 
with no compression at all. This is the case when each 
glyph forms a single cluster. The optimal threshold is 
hence the highest one which still does not cause 
substitution errors. Figure 2 shows the typical behavior 
of error and compression, obtained from a digitized 
and ground-truthed historical document containing 
German Fraktur. 

The function of substitution errors over all 
thresholds is unfortunately not available for new input 
material and can only be obtained via labor extensive, 
manual ground-truthing. As this is not feasible in 
automated workflows, it is desirable to find a function 
which a) can be calculated directly from the input and 
b) shows the same or at least a similar behavior like the 
error function. 

Experimental results show that the maximum intra 
cluster distance can be used for this purpose. It 
constitutes the maximum difference of the similarity 
measure between any glyph and its cluster prototype 
among all clusters. This function can be calculated 
based solely on the clustering results for all considered 
thresholds. Moreover, a strong correlation between the 
maximum intra cluster distance and the error rate can 
be shown for various document types. Figure 3 
contains the correlation coefficients from experiments 
with different scripts and fonts. 

 

 
Figure 3. Correlation between maximum intra 
cluster distance and error rate for different 
document types; (s) – synthetically created 
glyphs; (o) – glyphs from a digitized original.  

 
Values close to 1 indicate a high linear correlation 

i.e. potential dependency between the two functions. 
Due to the high effort for manually producing ground-
truthed test material, synthetic glyph sets have been 
created in addition to genuine glyph images from 
digitized originals. This was achieved by rendering 
characters with known labels using TrueType fonts 
and subsequently applying artificial deterioration. 

The rationale for the correlation and actually true 
dependency is that an increasing threshold causes 
bigger clusters which contain also less similar glyphs 
(i.e. with a higher distance to the prototype). This goes 
along with the introduction of misclassifications and 
hence the error rate. The maximum distance shows this 
effect better than the average or minimum distance 
since it reflects the least similar elements of clusters, 
i.e. the ones which are most likely to introduce errors. 

In terms of finding the optimal threshold, the task is 
now to find the point from where errors are introduced. 
The observation from ground-truth based experiments 
is that both, error rate and maximum intra cluster 
distance, show a leap when the threshold becomes too 
high and misclassifications start. 
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Figure 4. Selection of a safe threshold based 
on the maximum intra cluster distance. 

 
The threshold selection method must choose a safe 

value in order to guarantee stable and robust processes 
according to the aforementioned condition 1. This is 
achieved by approximating the first leap with a slope 
analysis of the function, selecting the threshold at the 
point where the function starts to rise. Once the 
threshold is found, the appropriate clustering can be 
determined and accordingly the set of prototypes i.e. 
the document-specific alphabet can be generated. 

 
5. Discussion 

 
The approach of the framework is built upon the 

assumption that self-contained documents like whole 
books are based on a finite number of characters and 
symbols which form the underlying alphabet. This 
alphabet is not always known in advance, especially 
not when dealing with historical documents. Using 
conventional systems, recognition and encoding of 
such originals is therefore only feasible for fragments 
or, in the worst case, entirely impossible. The 
presented method overcomes this limitation. Moreover, 
it allows completely automated workflows which are 
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necessary for mass digitization by automatically 
adapting to new document types. Encoding of digitized 
documents using a document-specific alphabet is also a 
step towards true recognition. This way, the necessary 
effort for manual transcription is reduced to labeling 
only a dramatically smaller set of prototypes. Even if 
this manual labeling is not carried out, there are still all 
the benefits from the encoded document representation 
(e.g. compression for storage, possibility of 
repurposing, cross-media publishing etc.). 

The extraction of document-specific alphabets 
using pattern matching is feasible if the employed 
similarity measure emphasizes discriminating details of 
glyphs. Such details are inherent to any font or 
graphical alphabet representation since human readers 
must be able to distinguish individual characters. 
Moreover, it is valid to treat significantly different 
appearances of the same character (e.g. scaled or 
rotated glyphs) as individual classes. Identical glyphs 
with different meanings, on the other hand, are very 
rare and can only be recognized using additional 
context information e.g. within a post-correction 
module. The impact of clustering identical glyphs with 
different meanings into the same class is very little in 
the scope of the described framework. This is due to 
the fact that any graphical reproduction of the encoded 
original will again lead to a human readable form. 
Consequences for text search are also minimal as fuzzy 
query matching methods can easily deal with minor 
ambiguities of that kind. 

The estimation of the optimal threshold, to judge 
about the similarity of two glyphs, plays a central role 
for the automation of the whole framework. There is a 
tradeoff between a low error rate using restrictive 
thresholds and a high compression rate at high 
thresholds. The approach of a flexible, document-
specific alphabet allows prioritizing accuracy rather 
than compression to make systems more robust. This is 
possible due to the different types of potential mis-
classifications. The first type occurs when a glyph is 
merged into a wrong cluster. This is a fatal substitution 
error and would cause mistakes in the encoded 
document. The second is less severe and arises when a 
glyph is erroneously put into a new cluster instead of 
being merged into its already existing true class. The 
first error type is to be avoided by all means for robust 
systems. The second, however, causes only 
redundancy (i.e. a non-optimal compression) and can 
be tolerated up to a certain degree. Thus, it is possible 
to implement the aforementioned two conditions for 
the optimal threshold in order to calculate the 
particularly best value for a given input. 

 

6. Conclusion and future work 
 
The functionality and background of a new method 

for self-adaptive extraction of document-specific 
alphabets has been shown in this paper. This method 
constitutes one of the core components of an 
alternative framework for document encoding 
independent of conventional OCR and hence not 
relying on any prior knowledge about underlying 
languages, scripts or fonts. Due to its ability to adapt to 
new types of documents it is well suited for integration 
into automated mass digitization workflows. 

Future work will include further improvements of 
the threshold estimation method. This step is currently 
very time-consuming as the algorithm iterates over all 
possible thresholds and over all input glyphs to find 
the best value. It is expected to reduce the number of 
necessary iterations dramatically by implementing 
heuristics for selecting a representative glyph subset to 
operate on. In terms of the framework it is planned to 
exploit results of the alphabet extraction module to 
refine the preceding glyph segmentation by 
implementing a feedback function. Moreover, search 
functionalities for document-specific encoded 
documents will be developed. The main problem here 
is rather the interface for users to enter queries using a 
document-specific alphabet than the actual text 
matching. 
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