
Keeping Informed:
Automatic Processing of Residual
Functional Capacity Form Images

JULIA PORCINO AND CHUNXIAO ZHOU

HIP’19

SEPTEMBER 20-21, 2019

Acknowledgements

This research was supported by the Intramural Research Program
of the National Institutes of Health and the US Social Security
Administration

All opinions expressed here are the authors and not those of the
US government.

We have no conflicts of interest to disclose.

Background

US Social Security Administration (SSA)

Disability Programs:
oWork disability
o Cash & Health Insurance

o>10 million beneficiaries

o2-3 million new applications

Adjudication Process:
oManual review

o External medical records and
evidence

o Internal administrative & case
processing data

0.00

2.00

4.00

6.00

8.00

10.00

12.00

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

N
u

m
b

er
 o

f
B

en
ef

ic
ia

ri
es

 (
M

il
li

o
n

s)

Total

Disabled Workers

Spouses

Children

SSA Office of the Chief Actuary: https://www.ssa.gov/oact/STATS/DIbenies.html

https://www.ssa.gov/oact/STATS/DIbenies.html

Residual Functional Capacity (RFC) Forms

Function as relates to work
o Mental and Physical RFCs

o Checkboxes and free text

o Currently: electronic database

o Historically: “paper” form

Motivation

Why are we interested in historical RFC Forms?
o Update current databases with historical form data
o Assess change in function over time
o Comparison to other sources of function

Millions of paper forms
o Forms used since 1980s

o Want automatic way to extract information

Challenges

SSA Data
SSA stores all documents as TIF images
o Limitations with existing software

RFC forms come from templates that can be edited
o Base content (generally) remains consistent

o Layout varies greatly

RFC Form Variation

Number of checkboxes per section:

Sections per page:

Section Spans Two Pages:

Distance between rows and columns:

Handwriting

Methods

Automatic Data Extraction

Steps:

➢ Checkbox Detection

➢ Checkbox Matching

➢ Templates

➢ Template Matching Algorithm

➢ Record Output

Checkbox Detection
Use python’s OpenCV to detect checkboxes based on size and shape

Ratio of black and white pixels at center of checkbox indicates marked checkboxes

Checkbox Matching
Checkbox Position:
◦ Euclidean Coordinates

◦ 𝑥𝑖 , 𝑦𝑖 , 𝑝𝑖

◦ Row-Column Coordinates (RCC)

◦ 𝑟𝑖 , 𝑐𝑖

Checkbox Alignment:
◦ 𝑥𝑖 − 𝑥𝑗 < 𝑒𝑐 ֜ 𝑐𝑖 = 𝑐𝑗

◦ 𝑦𝑖 − 𝑦𝑗 < 𝑒𝑟 ֜ 𝑟𝑖 = 𝑟𝑗

Section Break Row-Column Coordinates

RCC when no break occurs:
Before: [(1,1), (2,2), (2,3), (3,2), (3,3)]

After: {}

RCC when break occurs after 1st row:
Before: [(1,1)]

After: [(1,1), (1,2), (2,1), (2,2)]

RCC when break occurs after 2nd row:
Before: [(1,1), (2,2), (2,3)]

After: [(1,1), (1,2)]

Templates
3 Types of Templates:

o Section Template TS

o Simplest type of template
o Combined with other sections

to match form
o Form Template TF

o Consider entire form F to be
one section S

o Reduces ambiguity across
sections

o Break Template TSK

o Encodes all possible section
breaks

Template Matching Algorithm

Record Output

File Name Environmental
Limitations

Extreme Cold Extreme
Heat

Wetness Humidity

SAMPLE Avoid Concentrated Unlimited Avoid Concentrated Unlimited

SAMPLE.tif:

Tasks

TASK PURPOSE PHYSICAL RFCs* MENTAL RFCs*

Validation Evaluate templates and matching
algorithm performance against
original form images

10000 5000

Comparison Evaluate template matching (RCC)
against location matching
(Euclidean)

4914 2364

Sample Generation Perform data entry for entire
sample

497646 98408

*Refers to number of images in sample

Results

Performance across 3 tasks for Physical RFC (PRFC) and
Mental RFC (MRFC)

Comparison of Template vs. Location Matching

Performance Metrics

Error Analysis
Recall Errors:
o Missed checkboxes
o Image interference

o Scan noise

oHandwriting

o False positives

Precision Errors:
o Checkboxes appear marked when not
o Image interference/Scan noise

oCheckboxes not marked in center
oHandwriting

Next Steps
Checkbox Identification:
o Train models to identify checkboxes
o Deep learning models

Checkbox Matching:
o Add automation to template generation
o Learn to identify column/row headings

Generalization:
o Apply methods to other data
o Checkboxes in medical records

Conclusion
Successfully used novel templates to extract checkbox data

Good performance comes from specificity of task and strong
assumptions

o Grid-like structure of checkboxes

o No ambiguity in forms

Able to achieve good performance with basic computer vision
o Necessitated based on limited computing resources

o Errors came from missing checkboxes (handwriting, scan noise, etc.)

o More advanced methods (e.g., deep learning) could help improve checkbox
identification or may be necessary for other applications (e.g., medical records)

Thank you!
Questions?

Contact Information: julia.porcino@nih.gov

