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Background



US Social Security Administration (SSA)

Disability Programs:
oWork disability
o Cash & Health Insurance 

o>10 million beneficiaries

o2-3 million new applications

Adjudication Process:
oManual review

o External medical records and 
evidence

o Internal administrative & case 
processing data
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Residual Functional Capacity (RFC) Forms

Function as relates to work
o Mental and Physical RFCs

o Checkboxes and free text 

o Currently: electronic database

o Historically: “paper” form



Motivation

Why are we interested in historical RFC Forms?
o Update current databases with historical form data
o Assess change in function over time
o Comparison to other sources of function

Millions of paper forms
o Forms used since 1980s  

o Want automatic way to extract information



Challenges



SSA Data
SSA stores all documents as TIF images
o Limitations with existing software

RFC forms come from templates that can be edited
o Base content (generally) remains consistent

o Layout varies greatly



RFC Form Variation

Number of checkboxes per section:



Sections per page:



Section Spans Two Pages:



Distance between rows and columns:



Handwriting



Methods



Automatic Data Extraction

Steps:

➢ Checkbox Detection

➢ Checkbox Matching

➢ Templates

➢ Template Matching Algorithm

➢ Record Output



Checkbox Detection
Use python’s OpenCV to detect checkboxes based on size and shape

Ratio of black and white pixels at center of checkbox indicates marked checkboxes



Checkbox Matching
Checkbox Position:
◦ Euclidean Coordinates

◦ 𝑥𝑖 , 𝑦𝑖 , 𝑝𝑖

◦ Row-Column Coordinates (RCC)

◦ 𝑟𝑖 , 𝑐𝑖

Checkbox Alignment:
◦ 𝑥𝑖 − 𝑥𝑗 < 𝑒𝑐 ֜ 𝑐𝑖 = 𝑐𝑗

◦ 𝑦𝑖 − 𝑦𝑗 < 𝑒𝑟 ֜ 𝑟𝑖 = 𝑟𝑗



Section Break Row-Column Coordinates

RCC when no break occurs:
Before:  [(1,1), (2,2), (2,3), (3,2), (3,3)]

After: {}

RCC when break occurs after 1st row:
Before:  [(1,1)]

After: [(1,1), (1,2), (2,1), (2,2)]

RCC when break occurs after 2nd row:
Before:  [(1,1), (2,2), (2,3)]

After: [(1,1), (1,2)]



Templates
3 Types of Templates:

o Section Template TS 

o Simplest type of template
o Combined with other sections 

to match form
o Form Template TF

o Consider entire form F to be 
one section S

o Reduces ambiguity across 
sections

o Break Template TSK

o Encodes all possible section 
breaks



Template Matching Algorithm



Record Output

File Name Environmental 
Limitations

Extreme Cold Extreme 
Heat

Wetness Humidity

SAMPLE Avoid Concentrated Unlimited Avoid Concentrated Unlimited

SAMPLE.tif:



Tasks

TASK PURPOSE PHYSICAL RFCs* MENTAL RFCs*

Validation Evaluate templates and matching 
algorithm performance against 
original form images

10000 5000

Comparison Evaluate template matching (RCC) 
against location matching 
(Euclidean)

4914 2364

Sample Generation Perform data entry for entire 
sample

497646 98408

*Refers to number of images in sample



Results



Performance across 3 tasks for Physical RFC (PRFC) and 
Mental RFC (MRFC)

Comparison of Template vs. Location Matching

Performance Metrics



Error Analysis
Recall Errors:
o Missed checkboxes
o Image interference

o Scan noise

oHandwriting

o False positives

Precision Errors:
o Checkboxes appear marked when not
o Image interference/Scan noise

oCheckboxes not marked in center
oHandwriting



Next Steps
Checkbox Identification:
o Train models to identify checkboxes
o Deep learning models

Checkbox Matching:
o Add automation to template generation
o Learn to identify column/row headings

Generalization:
o Apply methods to other data
o Checkboxes in medical records



Conclusion
Successfully used novel templates to extract checkbox data

Good performance comes from specificity of task and strong 
assumptions

o Grid-like structure of checkboxes

o No ambiguity in forms

Able to achieve good performance with basic computer vision
o Necessitated based on limited computing resources

o Errors came from missing checkboxes (handwriting, scan noise, etc.) 

o More advanced methods (e.g., deep learning) could help improve checkbox 
identification or may be necessary for other applications (e.g., medical records)



Thank you!
Questions?

Contact Information: julia.porcino@nih.gov


